7.1 **AREAS BETWEEN CURVES**

> **EXAMPLE A** Find the approximate area of the region bounded by the curves $y = x/\sqrt{x^2 + 1}$ and $y = x^4 - x$.

SOLUTION If we were to try to find the exact intersection points, we would have to solve the equation

$$\frac{x}{\sqrt{x^2+1}} = x^4 - x$$

1.5 $\sqrt{x^2+1}$ -1 2 $y = x^4 - x$ -1

FIGURE I

This looks like a very difficult equation to solve exactly (in fact, it's impossible), so instead we use a graphing device to draw the graphs of the two curves in Figure 1. One intersection point is the origin. We zoom in toward the other point of intersection and find that $x \approx 1.18$. (If greater accuracy is required, we could use Newton's method or a rootfinder, if available on our graphing device.) Thus, an approximation to the area between the curves is

$$A \approx \int_{0}^{1.18} \left[\frac{x}{\sqrt{x^2 + 1}} - (x^4 - x) \right] dx$$

To integrate the first term we use the substitution $u = x^2 + 1$. Then du = 2x dx, and when x = 1.18, we have $u \approx 2.39$. So

$$A \approx \frac{1}{2} \int_{1}^{2.39} \frac{du}{\sqrt{u}} - \int_{0}^{1.18} (x^{4} - x) dx$$
$$= \sqrt{u} \Big]_{1}^{2.39} - \left[\frac{x^{5}}{5} - \frac{x^{2}}{2} \right]_{0}^{1.18}$$
$$= \sqrt{2.39} - 1 - \frac{(1.18)^{5}}{5} + \frac{(1.18)^{2}}{2}$$
$$\approx 0.785$$

EXAMPLE B Find the area of the region bounded by the curves $y = \sin x$, $y = \cos x, x = 0$, and $x = \pi/2$.

SOLUTION The points of intersection occur when $\sin x = \cos x$, that is, when $x = \pi/4$ (since $0 \le x \le \pi/2$). The region is sketched in Figure 2. Observe that $\cos x \ge \sin x$ when $0 \le x \le \pi/4$ but $\sin x \ge \cos x$ when $\pi/4 \le x \le \pi/2$. Therefore, the required area is

$$A = A_1 + A_2$$

= $\int_0^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, dx$
= $[\sin x + \cos x]_0^{\pi/4} + [-\cos x - \sin x]_{\pi/4}^{\pi/2}$
= $\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 0 - 1\right) + \left(-0 - 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)$
= $2\sqrt{2} - 2$

In this particular example we could have saved some work by noticing that the region is symmetric about $x = \pi/4$ and so

ŀ

$$A = 2A_1 = 2\int_0^{\pi/4} (\cos x - \sin x) \, dx$$

FIGURE 2